
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597273

Differential Molecular Weight Distributions in High Performance Size
Exclusion Chromatography
David W. Shortta

a Wyatt Technology Corporation, Santa Barbara, California

To cite this Article Shortt, David W.(1993) 'Differential Molecular Weight Distributions in High Performance Size
Exclusion Chromatography', Journal of Liquid Chromatography & Related Technologies, 16: 16, 3371 — 3391
To link to this Article: DOI: 10.1080/10826079308019695
URL: http://dx.doi.org/10.1080/10826079308019695

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597273
http://dx.doi.org/10.1080/10826079308019695
http://www.informaworld.com/terms-and-conditions-of-access.pdf


JOURNAL OF LIQUID CHROMATOGRAPHY, 16(16), 3371-3391 (1993) 

DIFFERENTIAL MOLECULAR WEIGHT 
DISTRIBUTIONS IN HIGH PERFORMANCE 

SIZE EXCLUSION CHROMATOGRAPHY 

DAVID W. SHORlT 
Wyatt Technology CoToration 

802 East Cota Street 
Santa Barbara, California 931 03 

ABSTRACT 

The definition and derivation of differential molecular weight distribution 
functions are thoroughly discussed. Common errors appearing in the literature are 
revealed and corrected. For high performance size exclusion chromatography 
(HPSEC), the importance of the calibration curve and its slope is discussed, and the 
application to gel permeation Chromatography (GPC) is illustrated with simulations 
and real data. 

1. INTRODUCTION 

The differential molecular weight distribution (MWD) of polymers or 
macromolecules is of great importance to the field of high performance size 
exclusion chromatography (HPSEC) or gel permeation chromatography (GPC). A 

number of papers and texts cover the subject as part of the more general field of 
polymer characterization. Unfortunately, there is some confusion in the literature 
on this subject, and it is the task of this paper to present clearly the definition and 
derivation of the differential distribution functions as well as to relate them to 
measured quantities. Section 2 covers the definitions and conventions of the 
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3372 SHORTT 

differential MWD and the moments of the distribution. Section 3 relates the MWD 
to measured quantities. Finally, Section 4 contains several examples for both 
broad and narrow distributions, using both simulations and real data. 

2. DEFINITIONS AND CONVENTIONS 

We adopt the following definitions: 

( i )  The cumulative number fraction N ( M )  is defined as the number fraction 
of molecules having molecular weight less than M .  Thus N ( M )  is the 
number of molecules in the sample having molecular weight less than M ,  
divided by the total number of sample molecules. 

( i i )  The cumulative weight fraction W ( M )  is defined as the weight fraction 
of molecules in  the sample having molecular weight less than M .  Thus 
W(M) is the mass of sample having molecular weight less than M ,  divided by 
the total sample mass. 

Since the quantities N ( M )  and W(M) are pure fractions, they are dimensionless. 

by the lowercase symbols n(M) and w(M), are defined by the relations 
The corresponding differential distributions, or MWD’s, which we shall denote 

The distributions w(M) and n(M) possess the following properties: 

( i )  The quantity n ( M )  d M  is the number fraction of molecules in the 
sample having a molecular weight between M and M + d M .  Thus n ( M )  is 
the number of sample molecules having molecular weight between M and 
M + d M ,  divided by the total number of sample molecules, and divided by 
dM,  in the limit as dM+O. 
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DIFFERENTIAL MOLECULAR WEIGHT DISTRIBUTIONS 3373 

( i i )  The quantity w ( M )  d M  is the weight fraction of sample having a 
molecular weight between M and M + d M .  Thus w ( M )  is the m a s s  of 
sample having molecular weight between M and M + d M ,  divided by the 
total sample mass, and divided by dM, in the limit as dM+O. 

The definitions of Eq. (1) lead to the following normalization conditions for 
n(M) and w(M): 

[ n ( M ) d M =  1 

These conditions are necessary because both N ( M )  and W ( M )  approach unity as 
M+=. Put another way, the conditions are a consequence of taking n ( M )  and 
w(M) to be fractions: if we add up all the fractions, we must obtain unity. In the 
following derivations we shall take all integrals to have the limits 0 and m unless 
otherwise stated. Also note that both w ( M )  and n ( M )  have dimensions of 
inverse molecular weight. 

To convert between w ( M )  and n(M) ,  note that for any molecular weight M ,  
M n(M)  is proportional to the mass of sample having molecular weight between 
M and M + d M ,  and therefore proportional to w(A4). Simply normalize to 
obtain 

The inverse relation is 
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3374 SHORlT 

Because we may easily obtain n(M) from w(M) or vice versa, only one of these 
is really necessary. As explained below, w ( M )  corresponds more closely to 
quantities actually measured in the laboratory. Therefore we shall use w ( M )  
rather than n(M). 

There is another common way to write a differential MWD, one used by a great 
manv researchers. It is 

We call x ( M )  a “differential log MWD” to indicate the derivative with respect to 
the logarithm of molecular weight. Since d (loglo M )  = (log,o e )  d M  / M ,  
we see that 

Historically, x(M) has been used because many samples contain fractions of very 
different molecular weights, making a logarithmic M scale convenient, and the 
necessary derivatives could be taken directly from the appropriate graphs. With the 
advent of GPC, in which the molecular weight of typical eluting fractions decreases 
roughly exponentially with elution volume, a logarithmic molecular weight scale is 
particularly appropriate. However, the distribution x ( M )  has properties quite 
different from those of w(M). First, it obeys a different normalization condition, 
namely 

Physically, x ( M )  d (log,, M )  is proportional to the weight fraction of sample 
having a log molecular weight between log,o M and loglo M + d (log,, M ) .  
We shall calculate both x ( M )  and w ( M )  and compare them for a number of 
examples later in this paper. 

We can easily express the various moments of the distribution in terms of 
w(M) or x ( M ) .  Using w(M) we can write the moments generally as 
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(8) 

where k = 0, 1, 2 corresponds to the number-, weight-, and z-average moments, 
written a,,, Mw, and M,, respectively. For different values of k we obtain the 
following expticit expressions €or the various moments: 

Moments beyond z are labeied z + 1, z + 2, etc. To write the moments in 
terms of x ( M ) ,  first combine Eqs. (1) and (5) to obtain 

Then replace w(M) dM in Eqs. (9a)-(9c) with x ( M )  d (loglo M ) .  
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3. RELATION TO MEASURED OUANTITIES 

SHORIIT 

Collecting data in GPC involves measuring, at each elution volume V ,  the 
molecular weight M as well as a concentration-sensitive signal. Typically, M is 
determined either by calibrating columns with standards or by using an absolute 
instrument such as a light scattering detector, and the concentration is determined 
with a refractive index (RI) or ultraviolet (UV) detector. It is almost universally 
assumed that the column separation is ideal, meaning that each volume contains a 
monodisperse fraction and thus possesses a unique value of M. However, it is 
important to realize that knowledge of M at each volume, and hence the 
determination of the MWD, is only as good as the separation of the columns. If 
different molecular weight species are present at each volume, the value of M we 
derive will be some sort of average (for example, light scattering gives the weight- 
average g,,,). This could also happen, for example, if the sample contains 
molecules of differing conformations and the same effective size. Most often the 
separation approximates the ideal, but it is advisable to be aware of the assumptions 
implicit in the calculations. 

The presence of axial dispersion can cause difficulties in interpreting the signals 
from molecular weight and concentration-sensitive detectors. If the detector data 
are used in conjunction with a standard molecular weight calibration curve or with a 
universal calibration curve, correction for axial dispersion is necessary, particularly 
for samples with narrow MWD’s. Such samples are quite common (in fact, they 
are often used for column calibration), but their uncorrected elution profiles are 
incompatible with a previously measured calibration curve due to dispersion in the 
columns or in the detector cell itself. An uncorrected detector signal will yield an 
unacceptably broad MWD if the width of the eluting peak is due mostly to column 
and/or detector broadening. The concentration signal must be corrected first. 

If one uses an on-line molecular weight sensitive detector, such as light 
scattering or viscosity, the situation is somewhat different. In this case, one must 
take the ratio of signals from the weight sensitive detector and the concentration 
detector. Assuming that interdetector broadening is not dominant, a narrow 
distribution sample yields a nearly constant ratio across the peak, correctly 
indicating a narrow distribution. Thus the sample can be determined to be 
monodisperse without correcting for dispersion. In the case of light scattering, the 
ratio of detector signals yields molecular weight directly, and the MWD can be 
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calculated. (It should be noted that interdetector broadening is often not negligible 
and can easily be revealed by taking the ratio of detector signals for a monodisperse 
standard). If the data are to be used with standard or universal calibration, 
corrections to both detectors may be necessary. A number of methods exist to 
correct for axial dispersion for both narrow and broad distribution samples, and are 
well presented in the literature.l4 In the discussion and examples which follow, it 
is assumed that such corrections have been applied where necessary. 

How do we convert measurements of molecular weight and concentration into a 
MWD? Begin by letting h( V) denote the concentration-sensitive detector response 
after subtraction of the baseline, where V is the elution volume. If h(V)  is 
measured with a RI or UV detector, we assume that h(V) dV is proportional to 
the mass of the sample in the elution volume V to V + dV.  Next, let F ( V )  be 
the weight fraction of sample eluted up to retention volume V .  Then for each 
incremental change in volume, the quantity h(V) dV is proportional to the 
incremental change in F( V): 

h(V) d V =  d F ( V )  

or 

These expressions could be made equalities if h(V) were normalized, i .e . ,  if 
j h (  V) dV = 1. Thus we simply divide by the integral to insure normalization 
and obtain the desired relation: 

Furthermore, since in GPC greater elution volumes correspond to smaller molecular 
weights, the cumulative quantities F(V) and W(M) are implicitly related by 

F(V) = 1 - W(M). (14) 
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Equation (1 )  then yields 

SHORTT 

The differential distribution w(M)  is thus the negative rate of change of the weight 
fraction of sample with respect to molecular weight. Remember that V is an 
implicit function of M through the “calibration curve” for the GPC column set. We 
know F as a function of V, not of M ,  but using the chain rule we can perform 
this change of variables and write 

We choose this apparently arbitrary combination of factors because 
d (loglo M )  / dV is the slope of the calibration curve for the column. The third 
factor on the right-hand side of Eq. (16) can be written as (logloe) / M ,  and so 
we have, using Eq. (13), 

Note that d (loglo M )  / dV,  the slope of the calibration curve, is negative 
because larger volumes correspond to lower molecular weights. Thus w ( M )  will 
be positive as required. Also, a mathematical word of caution is in order. Some 
texts, particularly older ones, use the symbol “log x” to indicate the natural or base 
e logarithm rather than the common or base 10 logarithm. For this reason 
(apparently) some presentations neglect the factor logloe in Eq. (17), which then 
makes the equations true only if the logarithms are taken to the base e. Since 
column calibrations are traditionally plotted as logIoM vs. V ,  it is prudent to 
include the base explicitly if properly normalized values of w(M) are required. 

To calculate x ( M )  from GPC data, we write an equation analogous to 
Eq. (16): 
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Applying Eq. (10) and rearranging gives 

3379 

(19) 

It is worth mentioning here that a number of errors have appeared in the 
literature concerning Eqs. (17) and/or (19). Yau el. d 3  derive an equation 
analogous to Eq. (19) which is in error by a factor of dV. Their worked example 
is saved by the fact that they take dV exactly equal to 1 ml. They also make the 
log,, e error discussed above; their MWD graph (their Fig. 10.4) integrates to 
about 0.4. Finally, the molecular weight axis of the graph is incorrect. Analysis of 
their data shows that the molecular weight axis is reversed with respect to the data 
which is plotted; it should run from lo3 to lo7 daltons, not lo7 to lo3. 
Billingham7 and Styring and Hamielec5 also make the logloe error if it is assumed 
that their logarithms are to the base 10. 

A more serious error is committed by those who ignore the necessity of 
including the slope of the calibration curve in the calculation of w(M) and x ( M ) .  

It is reported8 that some researchers (and commercial software!) calculate the 
weight fraction h(V) dV at each volume, transform V into M via the calibration 
curve, and plot the weight fraction against log,, M. In cases where the calibration 
curve is quite linear [ i .e . ,  d (log,oM) / dV is a constant, independent of v], 
this omission results in MWD's which have the correct shape but are in error by a 
constant factor; this type of error would not affect any calculation of moments of the 
distribution by Eqs. (9). If the calibration curve is not linear, the errors can be 
extreme, as pointed out clearly by Yau and Fleming9 This type of error renders the 
calculations quite inappropriate for any quantitative conclusions or for any long- 
term comparisons of data. 

An advantage of the log MWD formalism implied by Eq. (1 8) is that in the 
linear region of the calibration curve, x ( M )  is just a rescaled version of the elution 
curve h(V).  The MWD w ( M ) ,  on the other hand, is proportional to h(V) /M.  
Thus w(M) is more sensitive to fractions having lower molecular weights, while 
x ( M )  is sensitive to higher molecular weights. However, if the calibration curve 
is not linear, neither w(M) nor x ( M )  resemble h ( V ) .  Today's desktop 
computers have rendered both w ( M )  and x ( M )  quite easy to calculate, and the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



3380 SHORTT 

researcher may choose the distribution most suitable to the problem at hand, as  
long as he or she is aware of which distribution the software is calculating. 
Researchers should keep in mind that both distributions appear in the literature, 
although x ( M )  is more common. From a theoretical viewpoint, w ( M )  is 
probably more appropriate, but from a practical perspective, x ( M )  often more 
closely resembles h(V) .  In the following section w ( M )  and x ( M )  will be 
calculated and compared for several examples. 

4. WORKED EXAMPLES 

To clarify the preceding analytical discussion, it is useful to consider several 
detailed examples. First we shall consider two examples based on computer- 
simulated, rather than measured, data. Next we shall perform similar analysis on 
real data. 

A. Simulation - Broad Distribution 

First we need a column calibration curve, i.e., a plot of loglo M vs. elution 
volume V ,  as well as the concentration-sensitive signal h(V). Figure 1 shows 
such a plot. In an actual experiment the calibration curve would be obtained either 
by using standards of known molecular weight or by an absolute measurement such 
as light scattering. For clarity in the final results, the curve in Fig. 1 covers a wide 
range of molecular weights and is linear over a large volume interval. The 
concentration signal h(V) is a Gaussian centered at V = 10 ml. Of course, h is 
never measured as a continuous function of V.  Instead it is sampled at discrete 
time intervals proportional to the elution volume in each interval. We might more 
appropriately label the concentration-sensitive signal hi, where the subscript labels 
the i'" interval. The integral in Eq. (13) becomes a sum: 

h(V) dV + C hi AVi 
i 

where AVi is the ith volume interval. 
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FIGURE 1. Calibration curve and concentration response for a computer- 
simulated broad-distribution sample. 

Note that the distribution implied by Fig. 1 is intentionally very broad to 
illustrate differences between w(M) and x ( M ) .  The number-average molecular 
weight is 38,000 daltons, while the weight-average is 260,000, giving a 
polydispersity of 6.8. 

Our goal is to implement Eq. (17) for w ( M )  and Eq. (19) for x ( M ) .  To 
accomplish this, we need the derivative d (log,o M) / dV,  the slope of the 
calibration curve. Since the calibration curve for this example was determined 
analytically, it is easy to find the slope at any volume exactly. For real data this is 
more difficult; various techniques are discussed below. Once we have h(V) or hi 
and the calibration slope d (loglo M )  / dV for each volume, we calculate the 
differential distribution w(M) and the differential log distribution x ( M )  by 
Eqs. (17) and (19). The results appear in Figs. 2 and 3. Figure 2 shows the two 

functions plotted with a logarithmic M axis, while Fig. 3 has a linear A4 axis. 
Usually, one would plot w ( M )  against M and x ( M )  against loglo M .  In order 
to compare the calculations, however, in this paper we plot both functions against 
both axes. 

Note that x ( M )  has a maximum at M = lo5, the same molecular weight at 
which h(V) is a maximum. As discussed earlier, to the extent that the calibration 

dope is a constant, corresponding to a linear calibration curve, x(M) is just a 
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FIGURE 2. Differential MWD and log MWD for the sample in Fig. 1, plotted 
against log,o M .  
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FIGURE 3. Differential MWD and log MWD for the sample in Fig. 1, plotted 
against M .  
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rescaled plot of h(V) [see Eq. (19)l. The differential MWD w(M),  however, is 
proportional to h(V) / M [see Eq. (17)]. The difference is particularly evident 
in Fig. 3, which shows that x ( M )  has a large high molecular weight tail not 
present in w(M) .  

The factor of M between w ( M )  and x ( M )  causes the two distributions to 
have maxima at quite different molecular weights. The maximum of w(M)  occurs 
at M = 18,000, different by more than a factor of five from the maximum of 

x ( M ) .  The difference will be greater for polydisperse samples such as the one 
simulated here. This point is troubling, since many researchers use the peak of the 
differential distribution as a rough estimate of the “molecular weight” of their 
sample. It is even more important to know which differential distribution is being 
plotted if hard quantitative conclusions are to be drawn. For example, if the 
distribution is used to calculate any of the molecular weight moments, the correct 
equations must be employed. In other words, it is necessary to know whether to 
integrate over dM or d (log,&). Remember that both distributions occur in the 
literature. 

One clue as to which distribution has been calculated is to note the actual 
distribution values. For typical columns and samples (elutions occurring over 
several milliliters with molecular weights between lo4 and lo6 daltons), x ( M )  
tends to have peak values on the order of 0.1-10. This is because x ( M )  is 
normalized on a logarithmic scale [see Eq. (7)]. In contrast, w ( M )  tends to have 
peak values in the 10-6-104 range due to its normalization condition [Eq. (2)]. 
Caution is advised, however, since experience shows that the scaling and 
normalization of these functions in the literature is sometimes in error, and ordinate 
values often fail to appear on graphs. The situation is further complicated because 
even though w ( M )  is normalized by integrating over M, it is sometimes plotted 
against logIoM. It is customary, however, to use abscissas appropriate to the 
normalization of the distribution - that is, M for w ( M )  and loglo M for 
x ( M ) .  As mentioned above, for the sake of completeness these examples will 
illustrate both functions plotted on both axes. 

B , Simulation - Narrow Distribution 

Let us turn now to a second example involving two narrow elution peaks. We 
shall also use this example to investigate the effect of linear approximation to the 
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4 6 8 10 12 14 16 
Elution volume (ml) 

FIGURE 4. Calibration curve and concentration response for a computer- 
simulated sample with two narrow peaks. The dashed line is a linear fit to the 
calibration curve. 

calibration curve log,oM vs. V .  Figure 4 shows a calibration curve which is 
somewhat more non-linear than the one in Fig. 1. The dashed line is a linear fit to 
the curve. Also plotted is a concentration signal containing two narrow peaks of 
equal injected mass. For each of these two peaks the polydispersity is about 1.05. 
The peak positions have been chosen to be at volumes where the linear fit to the 
calibration curve is poor. 

The distributions w ( M )  and x ( M )  appear in Figs. 5 and 6 .  Note that once 
again x ( M )  looks very much like the elution curve (two equal-height peaks), while 
w ( M )  is weighted toward low molecular weights. If the calibration curve is 
exactly linear (meaning that log,o M is proportional to the volume V), then two 
peaks of x ( M )  having equal injected mass must have equal areas, when plotted 
against log,oM. The calibration curve here is not particularly linear, but the 
slopes near the peaks are roughly equal, and as a result the peak areas of x ( M )  in 
Fig. 5 are nearly equal. This is an important consequence of the logarithmic 
normalization of x ( M ) .  On the other hand, because w ( M )  is a differential 
distribution over M ,  not logloM, the low molecular weight peak must have a 
larger maximum. It is Fig. 6, plotted against M ,  in which the two peaks of 
w(M)  have equal areas. Also note that the molecular weights of the maxima of 
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FIGURE 5. Differential MWD and log MWD for the sample in Fig. 4, plotted 
against loglo M. 
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FIGURE 6. Differential MWD and log MWD for the sample in Fig. 4, plotted 
against M. 
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FIGURE 7. Comparison of linear fit with exact calibration curve in the calculation 
of w ( M ) .  
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FIGURE 8. Comparison of linear fit with exact calibration curve in the calculation 
of x (  M )  . 
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w ( M )  and x ( M )  agree much more closely for these narrow peaks than for the 
first example. This is to be expected, since M is more nearly constant across each 
peak. 

Figures 5 and 6 were both calculated using the exact calibration slope. If 
instead we use a linear fit to the calibration curve (the dashed line in Fig. 4), the 
results are quite different. Figures 7 and 8 compare the linear fit to the exact slope 
for both w ( M )  and x ( M ) .  The linear approximation to the calibration curve is 
poor near both peaks, too high for the first and too low for the second. This 
pushes the peaks of the distributions away from the molecular weight at the 
inflection point. Although the linear f i t  in Fig. 4 looks fairly benign, the 
logarithmic scaling is misleading, resulting in molecular weights of the MWD 
maxima which are in error by about 25-30%. If these curves are used in turn to 
calculate the various molecular weight moments [Eq. (9)], the moments will 
contain similar errors. Few researchers would be likely to accept the linear fit in 
Fig. 4; it is obviously in error. However, a fit three times as good might seem 
acceptable but would still give molecular weights nearly 10% off! The lesson is 
that an accurate determination of the calibration curve is essential in order to obtain 
accurate differential MWD’s and their moments. It is highly desirable to use a 
method which provides many good calibration points, allowing a reliable fit to be 
obtained. Many researchers use a cubic (or spline) fit, requiring at least four 
calibration points, although ten to fifteen points are much preferred. Alternatively, 
a method such as light scattering automatically provides a calibration curve for 
every sample, since the molecular weight is determined independently for each 
elution volume. 

C. RealData 

To determine the MWD for a real sample we need the slope of a real calibration 
curve. The calibration curve consists of discrete points either taken from elution 
volumes for known standards or from some independent molecular weight- 
sensitive measurement such as light scattering. Thus for real data we need to (i) 
approximate the derivative at each point from the data or (ii) fit the calibration curve 
to a model and use the derivative of the model. Method (i) tends to amplify errors 
in the calibration data. The preferred technique is to use method (ii) with either a 
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FIGURE 9. Calibration curve data and concentration response for the polystyrene 
standard NBS 706. 

linear or cubic polynomial or a spline. A cubic fit allows the nonlinearities at low 
and high volumes to be reasonably well-approximated. Furthermore, fitting the 
calibration curve to a model smooths noisy calibration data somewhat. Another 
practical factor is that the molecular weight standards used for calibration are often 
quite widely spaced in molecular weight; a fit is necessary in order to interpolate 
between the calibration points. On-line light scattering measurements remove this 
restriction, since a calibration curve is automatiLdly determined for each injection. 
Even so, a polynomial f i t  to the calibration curve has proved to be the best choice. 

To study the differential MWD of an actual sample, let us examine the results 
for a broad molecular weight standard, NBS 706. The sample was dissolved in 
toluene at ambient temperature. Separation was performed with two PSS SDV 

columns ( lo4 and lo6 A). Light scattering measurements were made with a Wyatt 
Technology DAWN model F multiangle laser light scattering photometer operating 
at a wavelength of 488 nm, and concentrations were determined by a Waters 410 
differential refractometer. The results appear in Figs. 9-1 1.  Figure 9 shows the 
overlaid refractometer and the calibration curve determined by light scattering. The 
calibration curve data are plotted along with a cubic fit used to calculate the slope. at 
each volume. The resulting differential distributions appear in Figs. 10 and 11. A 
logarithmic molecular weight scale is used in Fig. 10 and a linear scale in Fig. 11. 
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FIGURE 10. Differential MWD and log MWD for NBS 706, plotted against 
log,,M. 
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FIGURE 1 1. Differential MWD and log MWD for NBS 706, plotted against M. 
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As observed earlier for the broad molecular weight simulation, the maxima of the 
two distributions occur at quite different molecular weights: about 200,000 daltons 
for w ( M )  and 300,000 for x ( M ) .  

Note that w ( M )  does not seem to approach zero in the limit of low molecular 
weights. At large volumes (low molecular weights), h(V) approaches zero. But 
M is also decreasing approximately exponentially. Thus w(M),  which requires 
the ratio h ( V )  I M ,  does not approach zero as quickly as x ( M ) .  A plot on a 
linear scale (Fig. 11) shows that w ( M )  is indeed approaching zero at low 
molecular weights. 

5. CONCLUSIONS 

This paper has attempted to convey a clear, concise, and correct derivation of 
the differential MWD and its application to a number of specific examples. It was 
demonstrated that knowledge of the slope of the calibration curve is essential in 
determining an accurate MWD. In addition, care with logarithms is necessary. 
Common errors occurring in the literature were identified and corrections noted. 

The differential MWD is obviously one of the most important functions one can 
calculate from GPC data. The computing power available today allows a researcher 
to construct MWD's far more quickly than he or she can collect data, a quantum 
improvement from the situation just a few years ago. As Billingham7 wisely 
writes, however, "It is necessary to use any computer programme for GPC analysis 
with considerable care since the computer print-out gives the results an air of 
authority which may be misleading." 
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